Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results
1.

RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.

blue CRY2/CRY2 CRY2olig HEK293 ReNcell VM Organelle manipulation
Neuron, 27 Feb 2019 DOI: 10.1016/j.neuron.2019.01.048 Link to full text
Abstract: TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
2.

A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.

blue CRY2/CIB1 iLID C. elegans in vivo HEK293T primary rat hippocampal neurons Control of vesicular transport Neuronal activity control
Neuron, 28 Jan 2019 DOI: 10.1016/j.neuron.2019.01.002 Link to full text
Abstract: Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.
3.

Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase.

blue CRY2/CRY2 CRY2olig HEK293T primary mouse cortical neurons rat cortical neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Neuron, 30 Apr 2018 DOI: 10.1016/j.neuron.2018.04.011 Link to full text
Abstract: Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle.
4.

Optogenetic Tools for Subcellular Applications in Neuroscience.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Neuron, 1 Nov 2017 DOI: 10.1016/j.neuron.2017.09.047 Link to full text
Abstract: The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
5.

Kinetics of Endogenous CaMKII Required for Synaptic Plasticity Revealed by Optogenetic Kinase Inhibitor.

blue AsLOV2 HeLa in vitro mouse in vivo rat hippocampal neurons rat hippocampal slices Signaling cascade control Control of cytoskeleton / cell motility / cell shape Neuronal activity control
Neuron, 16 Mar 2017 DOI: 10.1016/j.neuron.2017.02.036 Link to full text
Abstract: Elucidating temporal windows of signaling activity required for synaptic and behavioral plasticity is crucial for understanding molecular mechanisms underlying these phenomena. Here, we developed photoactivatable autocamtide inhibitory peptide 2 (paAIP2), a genetically encoded, light-inducible inhibitor of CaMKII activity. The photoactivation of paAIP2 in neurons for 1-2 min during the induction of LTP and structural LTP (sLTP) of dendritic spines inhibited these forms of plasticity in hippocampal slices of rodents. However, photoactivation ∼1 min after the induction did not affect them, suggesting that the initial 1 min of CaMKII activation is sufficient for inducing LTP and sLTP. Furthermore, the photoactivation of paAIP2 expressed in amygdalar neurons of mice during an inhibitory avoidance task revealed that CaMKII activity during, but not after, training is required for the memory formation. Thus, we demonstrated that paAIP2 is useful to elucidate the temporal window of CaMKII activation required for synaptic plasticity and learning.
6.

Optogenetic Control of Synaptic Composition and Function.

blue CRY2/CIB1 rat hippocampal neurons Neuronal activity control
Neuron, 26 Jan 2017 DOI: 10.1016/j.neuron.2016.12.037 Link to full text
Abstract: The molecular composition of the postsynaptic membrane is sculpted by synaptic activity. During synaptic plasticity at excitatory synapses, numerous structural, signaling, and receptor molecules concentrate at the postsynaptic density (PSD) to regulate synaptic strength. We developed an approach that uses light to tune the abundance of specific molecules in the PSD. We used this approach to investigate the relationship between the number of AMPA-type glutamate receptors in the PSD and synaptic strength. Surprisingly, adding more AMPA receptors to excitatory contacts had little effect on synaptic strength. Instead, we observed increased excitatory input through the apparent addition of new functional sites. Our data support a model where adding AMPA receptors is sufficient to activate synapses that had few receptors to begin with, but that additional remodeling events are required to strengthen established synapses. More broadly, this approach introduces the precise spatiotemporal control of optogenetics to the molecular control of synaptic function.
7.

Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI).

blue miniSOG C. elegans in vivo rat cortical neurons rat hippocampal neurons rat hippocampal slices Control of vesicular transport Neuronal activity control
Neuron, 24 Jul 2013 DOI: 10.1016/j.neuron.2013.05.022 Link to full text
Abstract: Optogenetic techniques provide effective ways of manipulating the functions of selected neurons with light. In the current study, we engineered an optogenetic technique that directly inhibits neurotransmitter release. We used a genetically encoded singlet oxygen generator, miniSOG, to conduct chromophore assisted light inactivation (CALI) of synaptic proteins. Fusions of miniSOG to VAMP2 and synaptophysin enabled disruption of presynaptic vesicular release upon illumination with blue light. In cultured neurons and hippocampal organotypic slices, synaptic release was reduced up to 100%. Such inhibition lasted >1 hr and had minimal effects on membrane electrical properties. When miniSOG-VAMP2 was expressed panneuronally in Caenorhabditis elegans, movement of the worms was reduced after illumination, and paralysis was often observed. The movement of the worms recovered overnight. We name this technique Inhibition of Synapses with CALI (InSynC). InSynC is a powerful way to silence genetically specified synapses with light in a spatially and temporally precise manner.
Submit a new publication to our database